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ABSTRACT

The theory underlying the variational sensitivity forma-
lism is reviewed. Some general characteristics of uncertain-
ties in fast reactor parameters as a function of nuclear data
uncertainties are discussed. Numerical studies based on the
variational sensitivity theory and the statistical theory are
reviewed.

I. INTRODUCTION

It is often necessary to evaluate the effects of changes or uncertain-
ties in design parameters, processing methods or nuclear data upon integral
reactor physics parameters. Such effects can generally be determined by per-
forming detailed calculations for each configuration, but such an approach
may not be desirable from an economic viewpoint and may be impractical if the
changes of interest are small or local in character and/or of a statistical
nature. These considerations have led to the development of methods which
permit the use of fluxes and adjoints calculated for a reference system in
performing sensitivity studies for a variety of alterations.

The most direct procedure for performing sensitivity studies corresponds
to the well-known first-order perturbation theory. In this method the expres-
sion defining the integral parameter of interest is evaluated directly using
the exact mathematical operators along with the neutron flux and adjoint from
the reference system. A generalized perturbation theory introduced by Usachev
(1) and extended by Gandini (2) introduces corrections to account for the
change in the neutron flux and adjoint as a result of the system change. Us-
ing a variational formalism (3), Stacey (4) developed methods to give esti-
mates of reactivity worths and reaction rate ratios which gave second-order
errors with respect to the flux change. Using Stacey's results, Hwang (5)
has developed a means for treating statistical uncertainties in nuclear data.
In this paper the work of Stacey and Hwang will be reviewed. Numerical exam-
ples based on earlier studies relating to data and methods uncertainties are
presented.

II. VARIATIONAL PERTURBATION THEORY

The variational perturbation theory developed by Stacey may be used to
estimate general bilinear ratios and linear flux ratios. Examples of the for-
mer include reactivity worth, prompt-neutron lifetime, delayed-neutron frac-

tion, and reactivity worth ratios, while the latter includes breeding ratio





and reaction rate ratios. We shall consider only the estimation of reactivity
worth as it is not difficult to generalize to gcneral bilinear or linear
ratios.

Consider a critical reactor described by the equation

At =	 AB0 .	 (I)

In Eq. (1) the operator A represents neutron transport, scattering, and absorp-
tion, and B represents fission. 	 is the neutron flux and X = l/k where k is

the effective multiplication constant. The adjoint, e, for the system is des-

cribed by

A* 0 * = AB** ,	 (2)

where

(0 * ,A0) = (A*0*,0>

defines the operators A * and B * , ( ,) represents an inner product notation,
and it is assumed that the bilinear concomitant vanishes. If a reactivity
perturbation is introduced into the system, the operators A and B change by AA

and AB,

A' = A + AA ,	 B 	 = B + AB ,
	

(3)

and the perturbed system may be described by

A'0" = A - 8'0' .	 (4)

Using Eqs. (2) and (4), an exact expression for the reactivity worth of the

perturbation, p = -AX, is found,

AA =	
k' - k	 (0*,(AA - AAB)0') 
	

(5)
kk'	 (4)*,}3-4).>

If 0° is assumed to be given by the unperturbed flux 0, the first-order per-

turbation theory expression results,

<0 * ,(AA - XAB)0 
(AA) 0	 =

0*,F0

It is well known that this estimate of AA has errors which are first-order
with respect to 60 = 0' - 0. An estimate which is second order with respect

to A0 is given by the functional

(n), _ 
(*( AA - A AB)0	 _ k0 * A - AB)r) - (r * ,(A' - A"B')0).]. (7)

(0*,B-0

It is not difficult to show that (AX),,, is stationary about the functions

(6)
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0 * = 0 * and 0 = 	 of Eqs. (2) and (4) while the Euler equations for r* and
F are

	

(A - X13)F s = 
(*(AA - AAB)0)	 (0*,B.0)

	

(AA - AAB)0	 B°0

*

	

(AA * - AAB * ) 0 * 	B '0	
(9)(A* ' - A13*- )F: =

	(*(AA - AAB)0)	 (0%8'0>

The stationary value of (AX)v is given by Eq. (5) so that Eq. (7) pro-
vides an estimate of the reactivity worth of the perturbation which is accu-
rate to second-order with respect to errors in 0, 0 * , r, and F. When the un-
perturbed flux and adjoint of Eqs. (1) and (2) are used as trial functions,
then the variational estimate (AA)v is given by

(Ax) v = (AA) 0 11 - (r*,[AA - A(AB)14)))	 (10)

**
with F defined by Eq. (9) with 0 =	 and 0 = 0. It is convenient to approxi-
mate r* so as to avoid the need to estimate A', by the expression

(A* - Ae)F* .	 ( AA * - AAB* )0 *	,

	

- AAB)0)	 (*)

which satisfies the biorthogonality property

r *	 = o .	 (12)

Stacey (4) has shown that the factor multiplying GM() of Eq. (10) is a correc-
tion factor which accounts for the effect of the perturbation upon the flux.

Equation (10) thus provides an estimate of the reactivity worth of the
perturbation which is more accurate than first-order perturbation theory but
requires the solution of Eq. (11) in lieu of solving for the perturbed flux
using Eq. (4). Although there may be situations where Eq. (11) is easier to
solve than Eq. (4), the real incentive for use of the variational formalism
appears when one considers estimates of reactivity perturbations in an altered
system defined by the operators

A = A + 6A ,	 B = B + 6B .

The reactivity perturbation in the altered system is described by the operators

AA = AA + dA ,	 AB = AB + dB .

Stacey has shown that the reactivity worth of the perturbation in the altered
system may be estimated as

(n) v = ( °A) 0 13 ( 1	 flux)

	
(13)

(8)
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where

<*,	 - ( X (0)0)4) 
(17)(a) 0 -

(4)*,(13 + /73)0

where h accounts for the effect of the alteration in system properties upon
the first-order perturbation estimate

1 - (9)0
(*B4, 	 (4) * ,d80	 (O * ,(dA - AdB)O) 

,
SO ,(AA - XAB)O)	 (o*,(AA - AAB)O)

(O * ,(58O) + (*d10 

W,(B + LB)o>

W,(6A - A68)0 

(O* ,(8 + 613)(p)

Corrections for the change in the flux due to the introduction of the reac-
tivity perturbation and due to the alteration in the system are accounted for
by the term

- ( r * , (sA - AaB)m) - ( r * , (dA - AdB)m)
fflux

- (F * ,(AA - AAB)O) + F6A) 0 + (AX)O1

• 1-!F*,68O) + (r*,ABm) 	 ( r * , dBm5] ,	 (16)

with

(6A)
0

(14)

(15)

Correction for the change in the adjoint due to the alteration in the system

is accounted for by the term

adj	
- 0 * , (AA - A6B)F> + (6x) 0 (m* osBr) .	 (18)

The generalized adjoint r * is calculated from Eq. (11) and r is calculated
from

(A - Ati)r - 
(m * ,(AA - AAB)m)	 (m*,Bm)

(AA - A,0,13)(/) 	 Bo 
	

(19)

(O * ,BF)	 0 •	 (20)

Hence one set of trial functions O, O * , F * , and F may be calculated for

the original system from Eqs. (1), (2), (11), and (19) and then used to evalu-
ate the reactivity worth of a perturbation with only second-order errors for
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N

E aci)
j=1	 j

{ N

+ E bci)
j=1 J

ij —3 _
a.oo

many different alterations of the original system as well as the worth in the
reference system. The computational advantage of such a scheme relative to
computation of the unperturbed adjoint and perturbed flux for each system
alteration is obvious.

The variational sensitivity theory developed by Stacey (4) is applicable
to any representation of the operators A and B. An experimental code using a
one-dimensional diffusion theory representation, VARI-ID (6), has been devel-
oped to test the method and is currently available through the Argonne Code
Center. This code solves Eqs. (11) and (19) by a successive approximation
method which may be shown to be equivalent to a standard power iteration with-
out acceleration. A potential problem in the solution of these equations is
that of fundamental mode contamination since Eqs. (12) and (20) should be sat-
isfied. Numerical experience to date indicates no problem. Preliminary spec-
ifications for a two-dimensional diffusion theory capability have recently
been completed. The two-dimensional capability will be oriented to reactor
design applications. Initial studies have shown that the numerical methods
of the VARI-1D code appear to be applicable to the two-dimensional problem.

III. STATISTICAL UNCERTAINTIES IN SENSITIVITY STUDIES

The variational sensitivity formalism developed by Stacey (4) provides a
convenient way of relating any fractional change in reactivity coefficients or
reaction rate ratios to an arbitrary change in cross sections. Such a rela-
tion is essential if one is to consider how uncertainties in nuclear data and
their correlations affect design parameters. Hwang (5) has studied the
characteristics of uncertainties in integral reactor parameters as a function
of the corresponding uncertainties in nuclear data.

One can relate the fractional change in reactivity coefficient of type i
(e.g. central worth) to changes in cross section as

(21)

(i)where the coefficients a i(i) , b i , and c i(i) are functions of the reference
cross-section data	 and maybe obtained directlyfrom the variational sensi-
tivity theory code VARI-1D (6). The index N may be taken as the number of
energy intervals over which cross-section changes are considered and the num-
ber of altered reaction cross-section types.

Equation (21) can be generalized to the treatment of statistical uncer-
tainties in terms of mean-square deviations. Without loss of generality one
can write
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Ei ?
P

o /

=	 a (i)TK a (i)	 + H 	 (22)

Po

where K is the covariance matrix,

_	 )
O i	 -	 O j (O k	 -	 01(1

Kik (23)_

[	

j0 j 5 k j
_

H accounts for high-order terms in Eq. 	 (21) and E represents the mean-square
deviation.	 As long as the covariance matrix K is non-negative definite, 	 the
quadratic form in Eq.	 (22)	 is always true independent of the distribution
function assumed whereas H requires an assumption about the distribution func-
tion. Hwang (5) has shown that if one assumes the usual multivariate normal
distribution faction, then Eq. (22) is completely specified once the covari-
ance matrix is given.

Given K, the question of practical interest is whether the mean-square
deviation of the reactivity ratio exceeds some tolerance set by the reactor
designer. Is

In practical terms this question might take the form, "Accounting for all data
uncertainties and their correlations, are the data good enough to give 10%
accuracy on a central worth calculation?"

In order to study this problem qualitatively, Hwang (5) introduced a
region of tolerance for the reactor parameter of type i defined by the equation

X
T

A
(i)

X = 1

where

A
jk

)	 a(i)r.
3	 3k k

rjk	 KjkArc-jr—}(1A '

Irjk l < 1 ,	 j	 k

rjk = 1,	 I = k

(24)
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Equation (24) represents a "hyper-ellipsoid" surface in the N-dimensional
space of X and the size of the region depends on the matrix A. If I is the
total number of reactor parameters of interest, the region of tolerance can
be pictured as the common region bound by all I surfaces defined by the quad-
ratic form of Eq. (24).

Hwang proceeded to study the region of tolerance for a number of special
cases and he found that the region of tolerance can be extremely sensitive to
the choice of the correlation matrix especially when it approaches the posi-
tive semi-definite limit. As detailed information on the nature of the corre-
lation matrix, such as those proposed for the error file in ENDF/B, become
available, quantitative studies on the role of statistical uncertainties will
be pursued. Such data must, however, satisfy the non-negative definiteness
requirements in order for it to be physically meaningful and valuable in any
actual study.

IV. VARIATIONAL SENSITIVITY STUDIES

The variational sensitivity code VARI-1D (6) has been used extensively in
determining the sensitivity of integral neutronics properties of LMFBR criti-
cal assemblies to changes in data and methods. Some limited results from
these studies will be reviewed to indicate the scope of applications for which
sensitivity theory is appropriate.

Hummel and Stacey (7) performed extensive data uncertainty studies for
the plutonium-fueled ZPR-6 Assembly 7. Uncertainties of ±20% in central
sodium-void worth, ±5% in breeding ratio, and ±2% in keff were found to result
from current data uncertainties. Hwang (5) expanded on this work accounting
for correlations among the data by assuming six different covariance matrices.
In this study only intercorrelations of cross sections of the same type were
considered and the number of energy regions was limited to three, thus limit-
ing the size of the matrix A of Eq. (24). The linear coefficients were
obtained from the VARI-1D code. For keff and breeding ratio the coefficients
were all of the same sign so that no cancellation of error is expected and
the region of tolerance is relatively insensitive to the intercorrelation of
cross sections in various energy regions. For the central sodium worth, the
coefficients were such as to expect significant cancellation of error. Hwang
also found that the coefficients for 239 Pu fission and 238U capture were of
opposite sign so that error cancellation might be expected if the intracorre-
lations among these cross sections exist. The six correlation matrices
assumed by Hwang had the form shown in Table I. Case 3 representing complete
correlation corresponds to the study by Hummel and Stacey (7). Hwang assumed
a standard deviation of ±10% for 23 'Pu capture and fission and ±5%, t10%, and
t15% for 239U capture in the three energy regions. Table II gives Hwang's

results for ZPR-6 Assembly 7. Table III gives similar results for the ZPPR-4

assembly which closely resembles the Demonstration Plant design. The results
clearly show that the mean-square deviation is extremely sensitive to the cor-
relations among the data uncertainties.

Xj (25)

-7-





Studies were also performed to test the sensitivity of integral neu-
tronics parameters to various multigroup preparation methods (8). The effects
of in-sequence unresolved overlap corrections, fine-group pseudo-composition-
independent libraries, resolved resonance attenuation methods, and space-
dependent cross-section collapse were a few of the methods sensitivity studies
performed. In that study it was shown that a difference in k eff of 0.16%
could be attributed to the choice of fine-group mesh structure in use of the
MC 2 (19) code to generate multigroup cross sections. In view of the large
differences found among various processing codes (10) in the calculation of
keff for ZPR-6 Assembly 7, it is obvious that an intercomparison of these
codes using sensitivity methods is desirable.

Another study using the VARI-1D code concluded that the effects of the
(n,yn') reaction were sufficiently large to warrant inclusion of this reaction
in the 238U inelastic matrix (11). Studies of the central-worth discrepancy
in three critical assemblies concluded that errors in nuclear data and cross-
section preparation methods could account for a significant portion of the
discrepancy (12).

The studies noted above demonstrate the efficacy of the variational sen-
sitivity theory in providing an economical means of studying the effects of
changes in data, methods, and models on parameters of interest in the Fast
Breeder Reactor design.
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lABLE I

Assumed Correlation Matrix

Case 1'12 r13 r23

1 0. 0. 0.
2 0.5 0.5 0.5

3 0.99 0.99 0.99
4 -0.2 -0.2 -0.2

5 -0.72617 0.18019 -0.37240

6 -0.49 -0.49 -0.49
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TABLE II

Standard Deviations (±%) for ZPR-6, Assembly 7, Corresponding
to the Estimated Uncertainties in Cross Sections

keff Central Na-Worth BR

239pu 239pu 239pu

Case U-Capt. Fiss. Capt. U-Capt. Fiss. Capt. U-Capt. Fiss. Capt.

1 1.47 3.98 0.41 16.0 21.5 7.24 4.19 5.37 1.02
2 1.95 5.12 0.55 16.7 16.2 7.28 5.51 6.51 1.38
3 2.34 6.04 0.67 17.4 8.18 7.32 6.56 7.46 1.66
4 1.22 3.42 0.33 15.8 23.3 7.23 3.52 4.84 0.83
5 0.93 2.53 0.27 14.9 19.8 6.98 2.76 3.97 0.61
6 0.70 2.37 0.16 15.3 25.6 7.20 2.15 3.94 0.44

TABLE III

Standard Deviations (±%) for ZPPR-4 (Demo Mockup) Corresponding
to the Estimated Uncertainties in Cross Sections

ke ff Central Na-Worth BR

Pu Pu Pu

Case U-Capt. Fiss. Capt. U-Capt. Fiss. Capt. U-Capt. Fiss. Capt.

1 0.99 3.20 0.24 8.09 8.00 2.82 4.64 5.01 0.92
2 1.26 3.82 0.32 9.12 7.35 3.09 5.94 6.03 1.22
3 1.48 4.35 0.39 10.00 6.65 3.33 6.99 6.89 1.46
4 0.86 2.91 0.19 7.65 8.25 2.70 3.99 4.53 0.77
5 0.67 2.31 0.13 6.99 7.46 2.52 2.77 3.47 0.52
6 0.63 2.44 0.09 6.95 8.60 2.52 2.82 3.74 0.47
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